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ACCURACY OF GRADIENT RECONSTRUCTION ON GRIDS WITH
HIGH ASPECT RATIO

BORIS DISKIN∗ AND JAMES L. THOMAS†

Abstract.

Gradient approximation methods commonly used in unstructured-grid finite-volume schemes
intended for solutions of high Reynolds number flow equations are studied comprehensively. The
accuracy of gradients within cells and within faces is evaluated systematically for both node-centered
and cell-centered formulations. Computational and analytical evaluations are made on a series of
high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed-
element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical
geometries are considered; the latter serves to study the effects of geometric curvature. The study
shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a
combination of the grid and the solution. The contributors to the error are identified and approaches
to reduce errors are given, including the addition of higher-order terms in the direction of larger
mesh spacing. A parameter Γ characterizing accuracy on curved high-aspect-ratio grids is discussed
and an approximate-mapped-least-square method using a commonly-available distance function is
presented; the method provides accurate gradient reconstruction on general grids. The study is
intended to be a reference guide accompanying the construction of accurate and efficient methods
for high Reynolds number applications.
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AMS subject classifications. 65N12, 76M12

1. Introduction. Finite volume discretization (FVD) schemes on unstructured
grids with high aspect ratio are routinely encountered in computational fluid dynam-
ics simulations of viscous flows at high Reynolds number. Many second-order FVD
schemes require piecewise constant gradient reconstruction – within control volumes
for inviscid fluxes and within control-volume boundaries (faces) for viscous fluxes.
Gradients are also required for evaluation of source terms in turbulence equations.
Accuracy of gradient reconstruction on unstructured grids has drawn research atten-
tion for a long time. Since 1970, the finite-element community studied the gradient
reconstruction accuracy on triangles as a function of their angles [2, 4, 10, 14, 16]. A
series of more recent studies [11, 12, 15] considered the gradient accuracy on curvilin-
ear grids with high aspect ratio. While these publications addressed important aspects
of the problem, a general understanding of the accuracy of various gradient approx-
imations has not evolved. This paper reports on a comprehensive and systematic
study of accuracy of gradients involved in FVD schemes on general two-dimensional
(2D) grids with high aspect ratio.

The study is concerned with gradient reconstruction in the interior (no boundary
effects considered) and shows that the accuracy is determined by a combination of grid
and solution. On general non-symmetric meshes with aspect ratios sufficiently high
that the product of the aspect ratio and the greater mesh spacing is much larger than
one, any conventional gradient reconstruction method produces large errors for gra-
dients of well-resolved and smooth solutions that vary predominantly in the direction
of greater mesh spacing.
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Two geometries have been considered: rectangular and cylindrical. The cylin-
drical geometry is representative of grids with curvature-induced deformations. The
paper studies unstructured grid methods applied to both regular and irregular grids.
A grid is classified as regular if it has (1) a periodic node connectivity pattern (the
number of edges per node changes periodically) and (2) a periodic cell pattern. Thus
regular grids can be analyzed by Fourier analysis. Violation of either of these prop-
erties makes the grid irregular.
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Fig. 1.1. Control-volume partitioning for finite-volume discretizations. Numbers 0 − 12 and
letters A−L denote grid nodes and primal cell centers, respectively. The control volume for a node-
centered discretization around the grid node 0 is shaded. The control volume for a cell-centered
discretization around the cell center A is hashed.

Cell-centered and node-centered discretizations are considered. Cell-centered dis-
cretizations assume solutions are defined at the centers of the primal grid cells with
the primal cells serving as the control volumes. The cell center coordinates are typi-
cally defined as the averages of the coordinates of the cell’s vertexes. Node-centered
discretizations assume solutions are defined at the primal mesh nodes. For node-
centered schemes, control volumes are constructed around the mesh nodes by the
median-dual partition: the centers of primal cells are connected with the midpoints
of the surrounding faces. These non-overlapping control volumes cover the entire
computational domain and compose a mesh that is dual to the primal mesh. Both
cell-centered and node-centered control-volume partitions are illustrated in Figure 1.1.

The material in this paper is presented in the following order. Section 2 describes
the gradient approximation methods considered in this paper. Section 3 presents anal-
ysis and computations for high aspect ratio grids in a rectangular geometry. Specific
difficulties related to curvature-induced grid deformation are analyzed in Section 4.
Some discussions and conclusions are provided in Sections 5 and 6.

2. Gradient Approximation Methods. For both node-centered and cell-
centered formulations, gradients can be classified as within-cell gradients (C-gradients)
and within-face gradients (F-gradients). The C-gradient, which is used for inviscid
fluxes, is reconstructed within a control volume. Accuracy of the C-gradient is evalu-
ated by comparing the reconstructed C-gradient, ∇c

r, with the exact gradient, ∇c
exact,

computed at the control-volume center. The F-gradient, which is used for viscous
fluxes, is reconstructed within a control-volume face. Accuracy of the F-gradient is
evaluated by comparing the reconstructed F-gradient, ∇f

r , with the exact gradient,

∇f
exact, computed at the face center.
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The accuracy of gradient reconstruction is measured as the relative gradient error.
For example, relative error of the C-gradient is evaluated as

Erel =
‖ε‖
‖G‖ , (2.1)

where functions ε and G define point-wise amplitudes of the gradient error and the
exact gradient, respectively,

ε = |∇c
rU

h −∇c
exactU |, and G = |∇c

exactU |; (2.2)

U and Uh are a differentiable test function and its discrete representation (usually
injection) on a given grid, respectively; ‖ · ‖ is a norm of interest computed over the
entire computational domain. All estimates of the relative gradient reconstruction
accuracy reported in the following sections are obtained in numerical computations.
The estimates are supported by the Fourier analysis performed for several represen-
tative examples. For example, in a rectangular geometry, the analytical test function
is ei(αx+βy), and the gradient norm is evaluated as

√

α2 + β2.
The majority of gradient reconstruction methods can be characterized as either

element-free or element-based methods.

2.1. Element-free gradient reconstruction. The element-free approach typ-
ically relies on a least-square method. In this paper, four types of least-square meth-
ods are considered. In Cartesian coordinates, both weighted (WLSQ) and unweighted
(ULSQ) least-square methods are considered. In the WLSQ method, the contribu-
tions to the minimized functional are weighted with weights inversely proportional to
the distance from the central point; in the ULSQ method, all contributions are equally
weighted. For the gradient approximation in regions with curvature, two least-square
methods in a mapped domain are introduced: an exact mapping (EMLSQ) method
and a more general approximate mapping (AMLSQ) method. C-gradient fits are de-
noted with a leading C designation, as CULSQ, CWLSQ, CEMLSQ, and CAMLSQ; F-
gradient fits are denoted with a leading F designation, as FULSQ, FWLSQ, FEMLSQ,
and FAMLSQ. The C-gradient fits recover the solution value at the control-volume
center; two equations are solved (three in 3D). The F-gradient fits require solution of
three equations (four in 3D).

The stencils used in the C-gradient fits are discussed with respect to Figure 1.1.
For node-centered formulations, a typical stencil includes all nodes connected by an
edge to the given node; for node 0, the stencil involves neighbors 1, 2, and 4. For cell-
centered formulations, two types of stencils are considered — basic and augmented.
The basic stencil involves only centers of face-neighbor cells and the augmented stencil
includes the cells that share a vertex with the given cell. For cell-center A, the basic
stencil includes neighbors B, C, D, and E; the augmented stencil includes additionally
neighbors F, G, H, I, J, K, and L.

For cell-centered formulations, the least-square stencils involved in F-gradient re-
construction include the centers of the two cells sharing the face and face neighbors
of these two cells that share at least one vertex of the target face. With reference to
Figure 1.1, the stencil for gradient reconstruction at face [r0, r4] involves neighbors
A, B, C, E, and F . Here, ri is the coordinate vector of the node i. For gradient recon-
struction at face [r3, r4], the least-square stencil involves neighbors A, E, D, J, K, and
B. Although applications of similar least-square methods for F-gradient reconstruc-
tion in node-centered formulations are entirely possible, these methods are applied
only for cell-centered formulations in this paper.
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Note that an element-free face gradient can be combined with a directional con-
tribution across the face to determine the total F-gradient. Although not studied
in this paper, an F-gradient can be approximated as an average of the C-gradients
defined at the cells sharing the face,

For cell-centered formulations, another common method for F-gradient recon-
struction is a node averaging (NA) method. It is closely related to the least-square
methods; solution values are reconstructed at the nodes from the surrounding cell
centers. With respect to Figure 1.1, the solution at the node 0 is reconstructed by
averaging solutions defined at the cell centers A, B, and C. The solution reconstruc-
tion proposed in [9, 13] and used in [6] is an averaging procedure that is based on
a constrained optimization to satisfy some Laplacian properties. It has been shown
in [7] that this averaging procedure is equivalent to an unweighted least-square linear
fit. For F-gradient reconstructions, the derivative along the face is computed as the
divided difference between the solution values reconstructed at the nodes. The gra-
dient is resolved from the derivative along the face and the derivative along the edge
connecting the cell centers across the face. For the face [r0, r4], the face derivative is
computed using solutions reconstructed by node averaging at the nodes 0 and 4; the
edge derivative is computed using solutions at cell centers A and B.

2.2. Element-based gradient reconstruction. The element-based methods
require solutions at the element faces and reconstruct gradients with the Green-Gauss
(GG) formula

∇U =
1

Ω

∮

∂Ω

Uds, (2.3)

where Ω is the element volume, integration is performed over the element boundary,
∂Ω, and ds is the differential of the directed-area vector. The considered element
can be either a primal element or a control-volume element; although, in this paper,
the GG method is applied only over primal elements. For the second-order accuracy,
the integral over each element face is approximated by the product of the solution
computed at the face center and the directed area vector of the corresponding face.
The directed area vector is defined as the outward normal vector with the amplitude
equal to the face area.

For node-centered formulations, the GG method is used for F-gradient reconstruc-
tion. Solution values at the face-midpoints are obtained simply by averaging the nodal
values. For cell-centered formulations, the GG method is applied for C-gradient recon-
struction. The face-midpoint values are obtained either from F-gradient least-square
computations or by averaging the nodal values obtained through the NA method.
C-gradients computed in this manner are notated by the method used to obtain the
face value plus GG.

Tables 2.1 and 2.2 summarize the methods studied in this paper for C- and F-
gradient reconstruction, respectively, for node-centered and cell-centered formulations.

3. Gradient approximation in rectangular geometry.

3.1. Grids. The grids generated in the rectangular geometry are derived from an
underlying Cartesian grid with meshsizes hx and hy and the aspect ratio A = hx

hy
� 1;

both meshsizes of the underlying grids are assumed to be small, hy � hx � 1.
Six types of 2D grids are considered: (I) regular quadrilateral (i.e., Cartesian)

grids; (II) regular triangular grids derived from the regular quadrilateral grids by
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Table 2.1

Methods for C-gradient reconstruction.

Formulation Methods
Node centered element-free methods: CULSQ, CWLSQ, CEMLSQ, CAMLSQ
Cell centered element-free methods with basic and augmented stencils:

CULSQ, CWLSQ, CEMLSQ, CAMLSQ;
element-based methods: NA+GG, FULSQ+GG,
FWLSQ+GG, FEMLSQ+GG, FAMLSQ+GG

Table 2.2

Methods for F-gradient reconstruction.

Formulation Methods
Node centered element-based GG method
Cell centered element-free methods: NA, FULSQ, FWLSQ,

FEMLSQ, FAMLSQ

the same diagonal splitting of each quadrangle; (III) random triangular grids, in
which regular quadrangles are split by randomly chosen diagonals, each diagonal
orientation occurring with probability of half; (IV) perturbed triangular grids, which
are random triangular grids, with grid nodes perturbed from their initial positions by
independent random shifts in each dimension by a fraction of the local meshsize; (V)
perturbed quadrilateral grids, which are quadrilateral grids with randomly perturbed
grid nodes; and (VI) perturbed mixed-element grids, in which perturbed quadrangles
are randomly split or not split by randomly chosen diagonals. Grids of types (III),
(IV), and (VI) are irregular because there is no periodic connectivity pattern. Grids
of types (IV)-(VI) are irregular because there is no periodic pattern for distribution
of stencil distances from the stencil center.

For most of the computational tests, the random node perturbation in each di-
mension is defined as 1

4rh, where r ∈ [−1, 1] is a random number and h is the local
meshsize along the given dimension. With these perturbations, triangular cells in the
rectangular geometry are allowed to collapse, i.e., a cell may become a zero-volume
cell, albeit with a probability of approaching zero. The random perturbations are
introduced independently on all grids in grid refinement implying that grids (IV)-
(VI) are grids with discontinuous metrics, e.g., ratios of neighboring cell volumes and
face areas are random on all grids and do not approach unity in the limit of grid
refinement.

The grid types are shown in Figure 3.1. For a better visualization of the grid
topology, the grids are expanded in the y-direction.

3.2. C-gradients.

3.2.1. Node-centered schemes. Node-centered least-square stencils on grids
of type (I) and (II) are symmetric, and both CULSQ and CWLSQ methods provide
second-order accurate gradient approximations. On more general grids the approxi-
mation accuracy deteriorates.

To illustrate this difficulty, let us consider a stencil on a random triangular grid
of type (III) sketched in Figure 3.2. Assuming the center node at the origin, the
coordinates of all stencil nodes are given in Table 3.1.
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(c) Type (III): Random triangular grid
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(d) Type (IV): Perturbed triangular grid
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(f) Type (VI): Perturbed mixed grid

Fig. 3.1. Typical high-aspect-ratio rectangular grids expanded in the vertical direction.

The linear reconstruction f r(x, y) of a general function f(x, y) is defined as

fr ≡ f0 + ax + by, (3.1)
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Fig. 3.2. Node-centered formulation: least-square stencil for the C-gradient of the shaded cell
on a random triangular grid of type (III).

Table 3.1

Coordinates of stencil points in Figure 3.2.

Point x y

0 0 0

1 0 hy

2 −hx 0

3 −hx −hy

4 0 −hy

5 hx −hy

6 hx 0

7 hx hy

where f0 = f(0, 0). The components of the reconstructed gradient, ∇c
rf

r = (a, b)T ,
are found by minimizing the sum of the squares of the (weighted) differences between
the actual function and the linear fit computed at the stencil points.

7
∑

k=1

[µk(fr
k − fk)]2 → min, (3.2)

where µk are weights

µ1 = µ4 =
√

1 + ν2
1 ,

µ2 = µ6 =
√

1 + ν2
2 ,

µ3 = µ5 = µ7 = 1,

(3.3)

and the subindex is a point indicator. For the CULSQ method, ν1 = ν2 = 0; for the
CWLSQ method, ν1 = 1

ν2

= A = hx

hy
.

The result of minimization is

(

a
b

)

=
1

(5 + 2ν2
1)(5 + 2ν2

2) − 1

(

5+2ν2

1

hx
− 1

hx

− 1
hy

5+2ν2

2

hy

)

fh, (3.4)
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where fh is

fh =

(

−f0 − f2 − f3 + f5 + f6 + f7 + ν2
2 (−f2 + f6)

f0 + f1 − f3 − f4 − f5 + f7 + ν2
1 (f1 − f4)

)

. (3.5)

Assuming hy � hx � 1, for the test function f = ei(αx+βy), the leading terms in the
gradient approximation are

a ≈ iα − 1
hx

3+ν2

1

(5+2ν2

1
)(5+2ν2

2
)−1

(

α2h2
x − 2αβhxhy + β2h2

y

)

,

b ≈ iβ + 1
hy

3+ν2

2

(5+2ν2

1
)(5+2ν2

2
)−1

(

α2h2
x − 2αβhxhy + β2h2

y

)

.
(3.6)

In the case of solutions that are equally well-resolved in both directions, i.e.,
αhx ≈ βhy � 1, which is a typical case for velocity components in viscous boundary
layers, the relative error is small. For the CULSQ method and comparable frequencies
α ≈ β (typical of pressure in viscous boundary layers),

a ≈ iα − 1
8α2hx,

b ≈ iβ + 1
8α2 h2

x

hy
,

(3.7)

and the relative gradient error is dominated by the error in the y-direction as

Erel ≈ 1
8

α2√
α2+β2

Ahx. (3.8)

The error is converging with first order in grid refinement (hx → 0), but can be large

for a grid/solution combination with α2√
α2+β2

Ahx � 1.

For the CWLSQ method and comparable frequencies α ≈ β,

a ≈ iα − 1
10α2hx,

b ≈ iβ + 3
10α2hy.

(3.9)

and the relative error is small as long as α2hx � 1.
In general, the CWLSQ method helps to improve gradient reconstruction accu-

racy, if the least-square stencil includes points that are much closer to the center than
others or, more specifically, if the largest ratio of distances to the center is compara-
ble with the grid aspect ratio. This requirement is satisfied for unperturbed grids of
types (I)-(III). Unfortunately, general grids with perturbed nodes (types (IV)-(VI))
produce stencils with points that are similarly distant from the control-volume center,
i.e., the distance variation is not that large. The CWLSQ method does not guarantee
a small relative error on such grids. Figure 3.3 illustrates convergence of the gradient
approximation provided by the CULSQ and CWLSQ methods on perturbed trian-
gular grids of type (IV). The computations are performed on grids with A = 106

for the test function f = sin( π
50x + π

6 ). The gradient error converges with the first
order for both CULSQ and CWLSQ methods. On any given grid, the accuracy of
the CWLSQ method is about an order of magnitude better than the accuracy of the
CULSQ method. However, on grids with Ahx � 1, the relative gradient error of both
methods is much greater than one.

Table 3.4 before Section 3.2.3 summarizes the performance of the node-centered
CULSQ and CWLSQ methods on the tested grids. Appearance of the aspect ratio
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Fig. 3.3. Gradient approximation on randomly perturbed triangular grids of type (IV) with
aspect ratio A = 106.

parameter, A, in the accuracy estimate indicates that the relative gradient error may
be large for certain grid/solution combinations.

A general way to improve gradient accuracy is to amend the least-square fit
function by including higher order terms in the directions of large meshsize, e.g.,

fr ≡ f0 + ax + by + cx2; (3.10)

the leading relative error term then becomes O(α3Ah2
x). Additional high-order terms

further reduce the relative error; the leading term becomes O(αA(αhx)p), where p is
the highest power of x in the fit function. The relative gradient error is guaranteed
to be uniformly small, if the directional errors are comparable, i.e., (αhx)p+1 ≈ β2h2

y.

+

+

+

++

+

31

2

0

+

+

+

Fig. 3.4. Cell-centered formulation: least-square stencil for the C-gradient of the shaded cell on
a regular triangular grid of type (II). Black dots denote the basic stencil; crosses denote additional
cells contributing to the augmented stencil.
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Table 3.2

Coordinates of basic stencil points in Figure 3.4.

Point x y

0 0 0

1 −hx/3 hy/3

2 −hx/3 −2hy/3

3 2hx/3 hy/3

3.2.2. Cell-centered schemes. For cell-centered formulations, both CULSQ
and CWLSQ methods provide small relative gradient error on regular grids of types
(I) and (II) for basic and augmented stencils, even though the stencils on grids of type
(II) are not symmetric. To show this, let us consider a basic stencil for the shaded
cell shown in Figure 3.4. With the origin at the cell center, the coordinates of the
stencil vertexes are given in Table 3.2. The linear fit is the same as in (3.1). The
components of the reconstructed gradient, ∇c

rf
r = (a, b)T , are found by minimizing

the functional

3
∑

k=1

[µk(fr
k − fk)]

2 → min, (3.11)

For the CULSQ method, µ1 = µ2 = µ3 = 1. For the CWLSQ method, µ2
1 = 1 +

A2; µ2
2 = 4 + A2; µ2

3 = 1 + 4A2.
The result of minimization is

(

a
b

)

= 3
(µ2

1
+4µ2

2
+µ2

3
)(µ2

1
+µ2

2
+4µ2

3
)−(−µ2

1
+2µ2

2
+2µ2

3
)2

(

µ2

1
+4µ2

2
+µ2

3

hx

µ2

1
−2µ2

2
−2µ2

3

hx

µ2

1
−2µ2

2
−2µ2

3

hy

µ2

1
+µ2

2
+4µ2

3

hy

)

fh,

where

fh =

(

−µ2
1(f1 − f0) − µ2

2(f2 − f0) + 2µ2
3(f3 − f0)

µ2
1(f1 − f0) − 2µ2

2(f2 − f0) + µ2
3(f3 − f0)

)

.

For the test function f = ei(αx+βy), the reconstructed gradient components are
estimated as

a ≈ iα − 3
2hx

α2h2

x(−µ2

1
µ2

2
+µ2

1
µ2

3
+3µ2

2
µ2

3
)+αβhxhy2µ2

3
(µ2

1
+2µ2

2
)+β2h2

y2µ2

2
(µ2

3
−µ2

1
)

(µ2

1
+4µ2

2
+µ2

3
)(µ2

1
+µ2

2
+4µ2

3
)+(µ2

1
−2µ2

2
−2µ2

3
)2

,

b ≈ iβ − 3
2hy

α2h2

x2µ2

3
(µ2

1
−µ2

2
)−αβhxhyµ2

2
(µ2

1
+2µ2

3
)+β2h2

y(−µ2

1
µ2

2
+µ2

1
µ2

3
−3µ2

2
µ2

3
)

(µ2

1
+4µ2

2
+µ2

3
)(µ2

1
+µ2

2
+4µ2

3
)+(µ2

1
−2µ2

2
−2µ2

3
)2

.

(3.12)

In general, for comparable α and β, the error term corresponding to α2 in the

estimate for the y-directional gradient component, b, is proportional to
h2

x

hy
and may

become large on grids with Ahx � 1. However, for this specific case, the coefficient

h2
x

hy

2µ2
3(µ

2
1 − µ2

2)

(µ2
1 + 4µ2

2 + µ2
3)(µ

2
1 + µ2

2 + 4µ2
3) + (µ2

1 − 2µ2
2 − 2µ2

3)
2
.

becomes vanishingly small for both the CULSQ and CWLSQ reconstruction methods.
The error cancellations observed on grids of type (II) do not occur on more gen-

eral grids. For example, on grids of type (III), accuracy of the CULSQ method
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Fig. 3.5. Cell-centered formulation: least-square stencil for the C-gradient on a random trian-
gular grid of type (III), for which the CULSQ methods generates a large relative error.

Table 3.3

Coordinates of basic stencil points in Figure 3.5.

Point x y

0 0 0

1 −hx/3 hy/3

2 0 −2hy/3

3 2hx/3 hy/3

deteriorates; typical basic and augmented stencils are illustrated in Figure 3.5. The
coordinates of the basic stencil are given in Table 3.3.

Minimization problem (3.11) is solved with µ1 = µ2 = µ3 = 1 for the CULSQ
method and with µ2

1 = 1
1+A2 ; µ2

2 = 1
4 ; µ2

3 = 1
1+4A2 for the CWLSQ method. The

solution is given by

(

a
b

)

= 3
(µ2

1
+4µ2

2
+µ2

3
)(µ2

1
+4µ2

3
)−(µ2

1
−2µ2

3
)2

(

µ2

1
+4µ2

2
+µ2

3

hx

µ2

1
−2µ2

3

hx

µ2

1
−2µ2

3

hy

µ2

1
+4µ2

3

hy

)

fh,

where

fh =

(

−(−µ2
1 + 2µ2

3)f0 − µ2
1f1 + 2µ2

3f3

−(µ2
1 − 2µ2

2 + µ2
3)f0 + µ2

1f1 − 2µ2
2f2 + µ2

3f3

)

.

The test function f = ei(αx+βy) is again considered. For the CULSQ method with
the basic stencil,

a ≈ iα − 1
174

1
hx

(

37α2h2
x + 58αβhxhy + 12β2h2

y

)

,

b ≈ iβ − 1
174

1
hy

(

18α2h2
x − 31β2h2

y

)

,
(3.13)

and, for comparable α and β, the relative gradient error is proportional to the grid
aspect ratio, A,

Erel ≈ 3
29

α2√
α2+β2

Ahx; (3.14)
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it may become large, if Ahx � 1. For the augmented stencil, the CULSQ relative
gradient error remains proportional to the grid aspect ratio.

+

+

+

++

+

+

3

1

2

0

5

4

Fig. 3.6. Triangular grid for which the CWLSQ method generates a large relative error with
basic stencil.

Accuracy provided by CWLSQ method depends on the stencil configuration. For
the basic stencil shown in Figure 3.5, the largest ratio of distances from the center is
O(A), and the CWLSQ method provides small relative gradient errors independent
of grid aspect ratios. However, for another geometry shown in Figure 3.6, the largest
distance ratio is less than two. Consequently, the accuracy of the CWLSQ method
with the basic stencil is still proportional to A. The augmented stencil always includes
points much closer to the center than other points. For example, the distances from
the center to points 4 and 5 are much shorter than the distances to points 1, 2, and
3 for A � 1. The ratio of the distances becomes O(A), and the CWLSQ method
provides small relative gradient errors.

On general perturbed high-aspect ratio grids of types (IV)-(VI), both the CULSQ
and CWLSQ methods generate large relative gradient errors. Figure 3.7 illustrates
convergence of the L∞-norm of the errors on random triangular grids of types (III)
and (IV). The test function, f = sin( π

50x + π
6 ), varies smoothly in the direction of

large meshsize, hx, and the grid aspect ratio is fixed in grid refinement as A = 106.
The results confirm predictions of the analysis. On grids of type (III), only the combi-
nation of the CWLSQ method with the augmented stencil provides accurate gradient
reconstruction on all grids. On grids of type (IV) with Ahx � 1, all methods pro-
duce large relative gradient errors. Element-based reconstruction methods, NA+GG,
FULSQ+GG, and FWLSQ+G, do not provide accuracy benefits. Table 3.5 summa-
rizes results reported in this section.

Table 3.4

Node-centered formulation: accuracy of C-gradient reconstruction.

Grids (I) and (II) (III) (IV)–(VI)
CULSQ O(h2

x) O(Ahx) O(Ahx)
CWLSQ O(h2

x) O(hx) O(Ahx)
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(a) Random triangular grid of type (III)
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(b) Randomly perturbed triangular grid of type (IV)

Fig. 3.7. Convergence of relative gradient errors in C-gradient reconstruction on random tri-
angular grids for cell-centered formulation

3.2.3. Summary on C-gradient approximation. For second-order accuracy
of inviscid fluxes, the asymptotic order of the reconstructed C-gradient is required to
be at least first order. All the schemes considered in this section satisfy this require-
ment. The distinctions occur for certain combinations of solutions and cell/stencil
geometries, for which the relative error is proportional to the grid aspect ratio as
O(Ahx) and may become large. For general high-aspect-ratio grids, the accuracy
degradation occurs for solutions that vary predominantly in the direction of large
mesh spacing.

Comparing Tables 3.4 and 3.5, the following conclusions about accuracy of C-
gradients can be reached. For regular grids of types (I) and (II), both cell-centered

13



Table 3.5

Cell-centered formulation: accuracy of C-gradient reconstruction.

Grids (I) (II) (III) (IV)–(VI)
CULSQ, basic stencil O(h2

x) O(hx) O(Ahx) O(Ahx)
CULSQ, augmented stencil O(h2

x) O(hx) O(Ahx) O(Ahx)
CWLSQ, basic stencil O(h2

x) O(hx) O(Ahx) O(Ahx)
CWLSQ, augmented stencil O(h2

x) O(hx) O(hx) O(Ahx)
NA+GG O(h2

x) O(hx) O(Ahx) O(Ahx)
FULSQ+GG O(h2

x) O(hx) O(Ahx) O(Ahx)
FWLSQ+GG O(h2

x) O(hx) O(Ahx) O(Ahx)

and node-centered formulations provide accurate gradients. For grids of type (III),
which are typical for high-Reynolds turbulent-flow applications, each formulation has
a preferable method, providing accurate gradient reconstruction on all grids indepen-
dent of A – the CWLSQ method for node-centered formulations and the CWLSQ
method with the augmented stencil for cell-centered formulations. For perturbed
grids of types (IV)-(VI), both formulations suffer gradient accuracy degradation.

In those instances where degradation occurs, the leading component of the relative
gradient error is proportional to O(|fxx|Ahx), where f(x, y) is a test function. The
magnitude of |fxx|Ahx can be estimated a posteriori for each control volume in order
to determine if the computed gradient is accurate. Also, one can selectively add higher
order terms (only those varying in the directions of large mesh spacing) to the least
square fit to improve gradient reconstruction accuracy. The sufficient maximal power,

p, of added terms can be determined from the condition |∂(p+1)
x f |Ahp

x = O(1).

3.3. F-gradient.

3.3.1. Node-centered scheme. For the F-gradient reconstruction with node-
centered formulations, the GG method is used to reconstruct gradients at the primal
cells. On fully triangular grids, integration over the median-dual boundary results
in a formulation equivalent to a Galerkin finite-element scheme with a linear basis
function [1, 3]. Mixed-element node-centered schemes also employ easily available edge
derivatives to increase h-ellipticity of the discretization with no loss of accuracy [8].

0

4
3

2

1

A B

C

nL

nR

Fig. 3.8. Illustration of F-gradient reconstruction on mixed grids for node-centered formulations.
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For illustration, let us consider a discretization on the mixed-element grid shown
in Figure 3.8. The Green-Gauss formula,

∫

Ω

∇UdΩ =

∮

∂Ω

Uds, (3.15)

is applied over a primal element, Ω. It is known that on general (non-triangular) cells,
the Green-Gauss formula does not recover a linear function [5], but still produces at
least first-order accurate gradients.

The gradient, ∇UBC , at the dual face [B, C] is determined at the triangle ∆014

as

∇UBC = ∇U014 =
1

Ω014

(

U0 + U4

2
a04 +

U4 + U1

2
a41 +

U1 + U0

2
a10

)

, (3.16)

where the overbar denotes the Green-Gauss gradient evaluated on the primal cell iden-
tified by the point subscripts, Ui is the solution defined at the node i, and aij denotes
the face directed-area vector that is an outward normal vector with the amplitude
equal to the area (length) of the corresponding edge linking the nodes i and j. Note,
for this triangular element, the Green-Gauss method recovers the edge derivative,

U4 − U0

|r4 − r0|
= ∇UBC · e04, (3.17)

where ri is the coordinate vector of the node i and

e04 =
r4 − r0

|r4 − r0|
(3.18)

is the unit vector aligned with the edge connecting nodes 0 and 4.
For the dual face [A, B], the gradient, ∇UAB , is evaluated by the combination of

the Green-Gauss method and the edge derivative as

∇UAB = ∇U0234 +

[

U4 − U0

|r4 − r0|
− ∇U0234 · e04

]

e04. (3.19)

Note that for grids with dual faces perpendicular to edges, the edge gradient,
U4−U0

|r4−r0|
e04, is the only contributor to the normal gradient.

The combined F-gradient over the face ABC is computed at the point B as

∇f
r U =

(∇UAB · nR) + (∇UBC · nL)

|nR + nL|
, (3.20)

where nR and nL are directed areas of segments [A, B] and [B, C], respectively.
The following classical example [2, 16] illustrates the difficulties of F-gradient

reconstruction on grids with high aspect ratio. Consider a primal cell in the shape
of an isosceles obtuse triangle, shown in Figure 3.9, with vertex coordinates given in
Table 3.6.

For a general function f = f(x, y), any method that precisely recovers the gradient
of a linear function on a three-point stencil provides the following approximation to
the gradient.

∇f ≈
(

f3−f1

2hx

− f3−2f2+f1

2hy

)

. (3.21)
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Fig. 3.9. Obtuse triangle stencil.

Table 3.6

Vertex coordinates for the isosceles obtuse triangle shown in Figure 3.9.

Point x y

1 −hx 0

2 0 hy

3 hx 0

Performing the Taylor expansion at (x, y) = (0, 0) and assuming hy � hx � 1
for the test function f = ei(αx+βy) with comparable frequencies α ≈ β, the leading
terms in the gradient approximation are

∇f ≈
(

iα − i 1
6α3h2

x

iβ + 1
2α2 h2

x

hy

)

. (3.22)

The relative error in gradient approximation, O

(

α2Ahx√
α2+β2

)

, is again proportional to

the grid aspect ratio, A = hx

hy
, and can be large on grids with Ahx � 1.

Note that large relative errors in the gradient approximation are generated only
on cells with an obtuse angle approaching 180◦; such cells occur on grids of types
(IV)-(VI). The relative errors are small on triangles with two angles approaching 90◦,
such as those in grids of types (II) and (III). The F-gradient reconstruction accuracy
is summarized in Table 3.7

3.3.2. Cell-centered schemes. For F-gradient reconstruction in cell-centered
formulations, three methods are considered: the NA method [6, 9, 13] and two face-
based least-square (FULSQ and FWLSQ) methods. Table 3.8 summarizes results
from a series of numerical tests performed to study the accuracy of cell-centered F-
gradient reconstruction. The test function is U = sin

(

π
50x + π

6

)

and varies smoothly
in the x-direction only. The aspect ratio A = 106 is fixed in grid refinement. On
grids of type (I), NA, FULSQ and FWLSQ methods are second-order accurate. On
other grids, the methods demonstrate convergence with a first-order slope, but the
magnitude of the relative errors is large on grids with Ahx � 1. The FWLSQ method
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provides similar results to the FULSQ method for grid types (II) and (III) because
the ratios of distances from the center in the stencils are O(1).

Table 3.7

Node-centered formulations: accuracy of F-gradient reconstruction

Grids (I) (II) (III) (IV) –(VI)
Green Gauss O(h2

x) O(h2
x) O(hx) O(Ahx)

Table 3.8

Cell-centered formulations: accuracy of F-gradient reconstruction

Grids (I) (II) (III) (IV) –(VI)
NA O(h2

x) O(Ah2
x) O(Ahx) O(Ahx)

FULSQ O(h2
x) O(Ah2

x) O(Ahx) O(Ahx)
FWLSQ O(h2

x) O(Ah2
x) O(Ahx) O(Ahx)

As noted previously, weighted least-square methods are beneficial when the ratio
of distances from the stencil center becomes O(A), and the close points are displaced
predominantly in the direction of small mesh spacing. A single such point is required
for the CWLSQ method. The FWLSQ method require two such points to provide
accuracy.

On highly irregular grids, the presence of only one close point (much closer to
the stencil center than the other points) causes (rare) local sharp jumps in F-gradient
error, generally observable only on large grids and in the L∞ norm. In spite of the
jumps, the error upper bound still converges with first order in grid refinement. For
illustration purposes, Figure 3.10 shows convergence of the L∞-norm of relative gradi-
ent errors observed on randomly perturbed triangular grids of type (IV). In this test,
the random mesh perturbations have been introduced by shifting each node in the
Cartesian directions by 3

16rh, where r ∈ [−1, 1] is a random number and h is either
hx or hy for horizontal and vertical perturbations, respectively. The smaller pertur-
bations (the random shift coefficient is 3

16 instead of 1
4 used in other computations)

are used to avoid cell (near) collapses that may lead to infinite weights in the FWLSQ
method.

3.3.3. Summary on F-gradient approximation. For second-order accuracy
of viscous fluxes, the asymptotic order of reconstructed F-gradients is required to be
at least first order. The schemes considered in this section satisfy this requirement.
Similar to the C-gradient evaluation, a gradient accuracy degradation occurs for com-
binations of grids/stencils with Ahx � 1 and solutions that vary predominantly in
the direction of large mesh spacing.

Comparing Tables 3.7 and 3.8, the following conclusions are drawn. For quadri-
lateral grids of types (I), both node-centered and cell-centered formulations provide
accurate gradients. For unperturbed grids of types (II) and (III), the asymptotic order
is second and first order, respectively, for both formulations. However, node-centered
formulations possess an advantage over cell-centered formulations; the former always
provides accurate approximations, while the accuracy of the latter may degrade to
O(Ahx). In cell-centered formulations, the FWLSQ method does not provide any sig-
nificant benefits over the FULSQ method. For perturbed grids of types (IV)-(VI) and
for both formulations, the relative error in the gradient reconstruction is proportional
to the grid aspect ratio.
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Fig. 3.10. Cell-centered formulation: relative gradient error of F-gradient reconstruction on
perturbed grids of type (IV)

As discussed previously, accuracy of the reconstruction can be evaluated a pos-
teriori. Accuracy of least-square methods can be improved by expanding the fit with
additional higher-order terms varying in the direction of large mesh spacing; the gra-
dient reconstruction for these functions is accurate on grids with small deformations
(Γ � 1).

4. Gradient approximation in curved (cylindrical) geometry.

R

N

R

E

NW
0

W

ξ

S
NE

η

1

x

y

SW SE

Fig. 4.1. Schematic of nodes near curved surface.

4.1. Grids. In cylindrical geometry, the grid nodes are generated from a polar-
coordinate mapping, (r, θ), with spacings of hr and hθ, respectively. The mesh is
composed of grid nodes connected by straight-line segments. The grid aspect ratio
is defined as the ratio of meshsizes in the angular (circumferential) and the radial
directions, A = Rhθ

hr
, where R is a characteristic radius of the computational domain.
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The mesh deformation is characterized by a parameter Γ:

Γ =
|r1 − r0|
|rN − r0|

=
R − R cos(hθ)

hr

≈ Rh2
θ

2hr

= A
hθ

2
, (4.1)

where points ri are shown in Figure 4.1. The parameter Γ is a measure of the
curvature-induced mesh deformation relative to hr. In a mesh refinement that keeps
A fixed, Γ = O(Ahθ) asymptotes to zero. This property implies that on fine enough
grids, with fixed curvature and aspect ratio, the impact of curvature on the accuracy
of the gradient approximation is diminished.

The following assumptions are made about the grid parameters: A � 1, and
Γhr � 1, which implies that both hr and hθ are small, hr � Rhθ � 1. For a
given aspect ratio, A, the parameter Γ may vary: Γ � 1 corresponds to meshes with
curvature-induced deformation that is large compared to the radial mesh spacing;
Γ � 1 corresponds to (almost) undeformed meshes.

Three types of 2D grids are considered for the cylindrical geometry: (I) regular
quadrilateral grids; (II) regular triangular grids derived from the regular quadrilateral
grids by the same diagonal splitting of each quadrangle; (III) random triangular grids,
in which regular quadrangles are split by randomly chosen diagonals, each diagonal
orientation occurring with probability of half. Grids of types (III) are irregular because
there is no periodic connectivity pattern. The grid types are shown in Figures 4.2.
For a better visualization of the grid topology, low-Γ cylindrical grids are shown.
Random node perturbation is not applied to high-Γ cylindrical grids because even
small perturbations in the circumferential direction may lead to non-physical control
volumes.

For high-Γ grids of these types, one cannot expect a better gradient reconstruction
accuracy than the accuracy obtained for grid types (I, II, and III) in rectangular
geometry. In this section, we are focusing on difficulties specific to high-Γ grids with
large curvature-induced deformations. The difficulties arise for functions that are
predominantly varying in the radial direction of small mesh spacing. For functions
predominantly varying in the direction of small mesh spacing, gradient reconstruction
in rectangular geometries is expected to be accurate.

4.2. Analysis. To illustrate this new type of difficulty, we analyze least-square
C-gradient reconstruction methods for node-centered formulations. Similar analysis
has been performed in [11, 12]. Schematic of a stencil is shown in Figure 4.1. Local
Cartesian coordinates (ξ, η) are tangential and normal, respectively, to the circumfer-
ential grid lines and centered at r0. The nearby points used in the linear least-square
fit are denoted with a compass notation. The points are generated from a cylindrical
mapping where (r, θ) denote polar coordinates with spacings of hr and hθ, respec-
tively; the polar coordinates of r0 are (R, 0).

Table 4.1

Coordinates of points used in linear least-square fit.

Point ξ η r θ

0 0 0 R 0

N 0 hr R + hr 0

E R sin(hθ) −Γhr R hθ

S 0 −hr R − hr 0

W −R sin(hθ) −Γhr R hθ

19



−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

(a) Type (I): Regular quadrilateral grid
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(c) Type (III): Random triangular grid

Fig. 4.2. Typical cylindrical grids.

A linear least-square fit for a general function f(ξ, η) defined on the dual volume
centered at r0 can be constructed using the surrounding points rN , rE , rS , and rW

with the coordinates given in Table 4.1. The linear reconstruction, f r(ξ, η), of a test
function f(r) is defined as

fr ≡ f0 + aξ + bη, (4.2)

where f0 = f(0, 0). The two parameters (a, b) are found by minimizing the sum of
the squares of the (weighted) differences between f(r) and the reconstructed values

[

µ2
N (fr

N − fN)2 + µ2
E(fr

E − fE)2 + µ2
S(fr

S − fS)2 + µ2
W (fr

W − fW )2
]

→ min, (4.3)

where a subscript denotes a point, e.g., f r
E = fr(R sin(hθ),−Γhr). We can unify

description of the CULSQ and CWLSQ methods, assuming µN = µS = 1 and µE =
µW = µ; µ = 1 and µ = hr

2R sin
“

hθ
2

” ≈ hr

Rhθ
for the CULSQ and CWLSQ methods,

respectively.
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The minimization with R = 1 results in

a = fE−fW

2 sin(hθ) ,

b = fN−fS

2hr
− fN−fS

2hr

µ2Γ2

1+µ2Γ2 − fE−2f0+fW

h2

θ

h2

θ

2hr

µ2Γ
1+µ2Γ2 .

(4.4)

The leading terms of the gradient approximation,

a ≈ fξ + O
(

h2
θ

)

,

b ≈ fN−fS

2hr
−
(

fN−fS

2hr
+ fE−2f0+fW

h2

θ

)

µ2Γ2

1+µ2Γ2

= fη − (fη + fξξ)
µ2Γ2

1+µ2Γ2 + O
(

h2
r +

µ2Γ2h2

θ

1+µ2Γ2

)

,

(4.5)

indicate that the gradient in the ξ-direction is always reconstructed with O(h2
θ) ac-

curacy, independent of the least-square weights and/or Γ. The CULSQ method
(µ2 = 1) reconstructs the gradient in the η-direction with the leading error esti-

mated as (fη + fξξ)
Γ2

1+Γ2 . The gradient error in the η-direction is O(1) on grids with
Γ � 1, but asymptotically converges with second order in isotropic grid refinement.
The CWLSQ method (µ2Γ2 = h2

θ/4) provides O(h2
θ) accuracy in approximating the

η-directional gradient.
To improve the gradient approximation, one can perform a least-square mini-

mization in a mapped domain. Two mapped least-square methods are considered:
an exact mapping (CEMLSQ) method that uses the polar coordinates directly; and
a more general approximate mapping (CAMLSQ) method that is based on the dis-
tance function, defined as the distance to the nearest boundary, normally available
in practical schemes. For functions varying predominantly in the direction of small
mesh spacing, the least square methods provide accurate gradient reconstruction in
rectangular geometries. The CEMLSQ scheme recovers the same accuracy on curved
grids of types (I)-(III). Applicability of CEMLSQ is limited to model problems with
analytical boundary shape.

The more general CAMLSQ method approximates the CEMLSQ method by ap-
plying the least-square minimization in a locally constructed coordinate system.

fr ≡ f0 + κξ′ + λη′. (4.6)

The local coordinates, (ξ′, η′), are constructed using the distance function, which
provides information on the closest boundary point. The coordinate vectors at each
point are defined as a unit η′-directional vector pointing in the direction opposite
to the closest boundary point and its orthonormal ξ′-directional vector. The η′-
coordinate at each stencil node is its distance from the boundary and the ξ ′-coordinate
is the projection of the vector connecting the node with the central node onto the ξ ′-
direction. For the cylindrical geometry, the distance function is the shifted radial
function, r−R. Table 4.2 contains CAMLSQ stencil coordinates for geometry shown
in Figure 4.1.

In implementation of approximate-mapping method, it is important to have an
accurate representation for the distance function. The discrete distance function
that provides distances to the flat-panel boundary approximation rather than to the
actual boundary may lead to gradient accuracy deterioration. The error introduced
into the distance function by the flat-panel boundary approximation is proportional
to Rh2

θ and is large comparing to the radial mesh size hr. If uncompensated, this
error will contribute an O(Ahθ) term into the reconstructed radial gradient. For C-
gradient fits on grids of types (I)-(III), this boundary related distance-function error
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Table 4.2

Coordinates of points used in CAMLSQ method.

Point ξ′ η′

0 0 0

N 0 hr

E R sin(hθ) 0

S 0 −hr

W −R sin(hθ) 0

is compensated because it is the same for all points in the stencil. However, for more
general grids, e.g., mixed-element grids, an inaccurate distance function degrades
accuracy of the approximate-mapping method.

Note that on regular quadrilateral grids, the least-square linear reconstructions
in the polar coordinates and in the CAMLSQ local coordinates are fully decoupled;
so CEMLSQ and CAMLSQ methods provide second-order accurate approximations
κ = fr + O(h2

r) and λ = fθ + O(h2
θ).

The CAMLSQ method is especially attractive in situations where all other gra-
dient reconstruction methods fail. For example, in some stencils, e.g., the bow-type
stencils involving r0, rNW , rNE , rSW , and rSE , all peripheral points are (approxi-
mately) equidistant from the stencil center, so the CWLSQ method does not help.
Mapped least-square methods remain accurate for such stencils.

4.3. Numerical tests. Numerical tests are performed on a domain with radial
extent of [1, 1.000002], angular extent of 10◦, and the coarsest grid of 9 × 9 nodes,
which leads to high-Γ grids with aspect ratio A ≈ 400, 000 fixed in grid refinement.
A radial function, U = sin(100πr + π

6 ), is the test function. For C-gradients, CULSQ,
CWLSQ, and CAMLSQ methods are used in both cell-centered and node-centered
formulations. For cell-centered formulations, three types of methods are considered:
element-based methods and element-free methods with basic and augmented stencils.
Five reconstruction methods for F-gradients in cell-centered formulations are consid-
ered: four least square methods (CULSQ, CWLSQ, CEMLSQ, and CAMLSQ) and
the NA method. For node-centered formulations, the F-gradients are reconstructed
with the GG method. Tables 4.4 and 4.3 summarize the test results concerned with
the relative errors of gradient reconstruction. Figure 4.3 illustrates convergence of
some C-gradient methods on grids of type (III) for cell-centered formulations.

4.4. Conclusions. The results shown in Tables 4.3 and 4.4 lead to the following
conclusions.

• The CAMLSQ and FAMLSQ methods provide good accuracy for all gradients
on all grids.

• On regular quadrilateral grids of type (I), all methods except the CULSQ
method provide good accuracy.

• Node-centered formulations (for C-gradients, in combination with either aug-
mented CWLSQ or CAMLSQ methods) provide accurate gradient reconstruc-
tion on all studied grids.

• On triangular grids of types (II) and (III) in cell-centered formulations, the
FWLSQ method does not improve over the FULSQ method; both methods
exhibit O(1) error.

• Also on triangular grids of types (II) and (III), both the CULSQ and CWLSQ
cell-centered methods exhibit O(1) error with the basic stencil. Expanding
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Fig. 4.3. Cell-centered formulation: C-gradient accuracy for the radial test function on high-Γ
grids of type (III).

Table 4.3

High-Γ grids: relative errors of C-gradient reconstruction

node-centered formulation
(I) (II) (III)

CULSQ O(1) O(1) O(1)
CWLSQ O(h2

θ) O(h2
θ) O(hθ)

CAMLSQ O(h2
θ) O(hθ) O(hθ)

cell-centered formulation, basic stencil
CULSQ O(1) O(1) O(1)
CWLSQ O(h2

θ) O(1) O(1)
CAMLSQ O(h2

θ) O(hθ) O(hθ)
cell-centered formulation, augmented stencil

CULSQ O(1) O(1) O(1)
CWLSQ O(h2

θ) O(h2
θ) O(hθ)

CAMLSQ O(h2
θ) O(hθ) O(hθ)

cell-centered formulation, element-based
NA+GG O(h2

θ) O(hθ) O(Ahθ)
FULSQ+GG O(h2

θ) O(hθ) O(1)
FWLSQ+GG O(h2

θ) O(hθ) O(1)

the least-square stencil beyond immediate neighbors (augmentation) does not
provide accuracy benefits for the CULSQ method, but is beneficial for the
CWLSQ method.

• In cell-centered formulations, the element-based methods provide C-gradient
benefits only over the CULSQ method on grids of type (I) and (II). On grids
of type (III), the error of the NA+GG method is O(Ahθ).

• The NA method provides accurate F-gradient approximations for regular
grids, but exhibits O(Ahθ) relative errors for gradients on high-Γ grids of
type (III); these large errors occur at the radial faces.
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Table 4.4

High-Γ grids: relative errors of F-gradient reconstruction

node-centered formulation
(I) (II) (III)

Green-Gauss O(h2
θ) O(hθ) O(hθ)

cell-centered formulation
FULSQ O(h2

θ) O(1) O(1)
FWLSQ O(h2

θ) O(1) O(1)
FEMLSQ O(h2

r) O(h2
r) O(h2

r)
FAMLSQ O(h2

θ) O(h2
θ) O(h2

θ)
NA O(h2

θ) O(h2
θ) O(Ahθ)

5. Additional remarks. The study is intended to be a reference guide accom-
panying the construction of accurate and efficient FVD methods for high Reynolds
number flow applications. It is focused on gradient reconstruction accuracy; other re-
lated issues, such as solution accuracy and stability, have not been considered. Never-
theless, we remark on several issues that are important in this context of constructing
flow solvers.

Remark 1. A poor gradient reconstruction accuracy does not necessarily imply
large discretization error. For example, some discretizations based on CULSQ method
are known to produce (second-order) accurate solutions [11] even on grids where
the CULSQ method has a large gradient reconstruction error. This counterintuitive
observation is explained by the fact that the large O(Ahx) error affects the gradient
in the y-direction of small mesh spacing on grids where hy � h2

x. The solution
reconstruction error introduced by the gradient inaccuracy on such grids is second-
order small O(Ahxhy) = O(h2

x).
Remark 2. In practical computations, high-aspect ratio grids are generated to

better approximate certain components of the solutions, e.g., velocity components in
viscous boundary layers. These grids are typically well suited to provide accurate
gradients for the target solution components; however, gradients of other solution
components, e.g., pressure, computed on these grids might be inaccurate. This limi-
tation should be considered in constructing limiters that rely on ratios of gradients.

Remark 3. For node-centered formulations, the CWLSQ method provides accu-
rate C-gradient approximations. However, serious convergence difficulties have been
reported ([15]) using defect-correction iterations with the CWLSQ method.

Remark 4. Additional difficulty associated with the NA schemes [6] stems from the
fact that, for stability, the coefficients of the pseudo-Laplacian used in the averaging
are clipped between 0 and 2. This clipping can lead to significant inaccuracies in
gradient reconstruction.

6. Conclusions. The accuracy of the gradient approximation is a key contrib-
utor to solution accuracy. A comprehensive and systematic evaluation of the accu-
racy of gradients needed in unstructured-grid finite-volume schemes intended for high
Reynolds number applications has been presented. The accuracy and asymptotic or-
der properties of within-cell and within-face gradient approximations have been shown
for current algorithms used in both node-centered and cell-centered formulations. The
evaluations have been made for high-aspect-ratio grids in both Cartesian and cylin-
drical geometries using six grid topologies with quadrilateral, triangular, and mixed
element types, with and without random perturbations. The study shows that the
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accuracy of gradient reconstruction at high aspect-ratio is determined by a combina-
tion of grid and solution. On general unstructured meshes with aspect ratios high
enough, so that the product of the aspect ratio and the bigger mesh spacing is much
larger than one, any conventional gradient reconstruction method produces large er-
rors for gradients of well-resolved and smooth solutions that vary predominantly in
the direction of big mesh spacing, e.g., pressure in a boundary-layer type mesh. Spe-
cific comparisons of the relative differences between node-centered and cell-centered
approaches using Green-Gauss, unweighted and weighted least-squares, and node-
averaging methods have been given. The study is intended to be a reference guide
accompanying the construction of accurate and efficient methods for high Reynolds
number flow applications.

Specific approaches to reduce errors encountered in applications are given. One
approach is to monitor the terms in the solution contributing to the error and add
higher-order terms in the direction of larger mesh spacing. Another approach is to em-
ploy an approximate-mapped least-square method based on the distance function that
is normally available in practical schemes. In curved geometries, the latter approach
provides accurate gradient reconstruction on general high-aspect-ratio grids.
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